This function reads level 2 (L2) node data for neuron segmentations in the crant ant brain connectome dataset. It uses the pcg_skel Python library to create a skeleton object, which is then converted into a nat neuron object in R.
Arguments
- ids
A vector of one or more neuron segment IDs to read.
- OmitFailures
Logical; if TRUE, any segments that fail to be read are omitted from the results without an error (default=TRUE).
- datastack_name
An optional CAVE dataset name (expert use only, by default will choose the standard crant dataset). See details.
- ...
Additional arguments passed to internal functions.
Value
A neuronlist
containing one or more neuron
objects. Note that neurons
will be calibrated in nanometers (nm).
Details
crant_read_l2skel
works by:
Validating the input IDs using
crant_ids
.Using pcg_skel to generate a skeleton for each neuron segment.
Converting the pcg_skel skeleton to an SWC format DataFrame.
Converting the SWC DataFrame into a nat neuron object.
This function relies on the pcg_skel Python library (https://github.com/AllenInstitute/pcg_skel) for skeleton generation. Ensure that pcg_skel is installed in your Python environment.
See also
crant_ids
for ID validation
neuron
for details on the neuron object structure
neuronlist
for details on the neuronlist object structure
Examples
if (FALSE) { # \dontrun{
# One-time installation of necessary Python packages
fafbseg::simple_python('none', pkgs='numpy~=1.23.5')
fafbseg::simple_python(pkgs="pcg_skel")
# Read a single neuron
ant.neuron <- crant_read_l2skel("576460752653449509")
# Plot the neuron
plot3d(ant.neuron)
# Plot with crant surface (assuming crant.surf is available)
plot3d(crant.surf, alpha = 0.1, col = "lightgrey")
} # }