Returns synaptically connected partners for specified neurons. Understanding synaptic partnerships is crucial for analyzing neural circuits in the Brain And Nerve Cord (BANC) connectome, revealing how distributed control architecture coordinates behaviour across brain and ventral nerve cord regions.
banc_partners
returns details of each unitary synaptic
connection (including its xyz location).
Usage
banc_partner_summary(
rootids,
partners = c("outputs", "inputs"),
synapse_table = c("synapses_250226", "synapses_v1"),
threshold = 0,
remove_autapses = TRUE,
cleft.threshold = 0,
datastack_name = NULL,
...
)
banc_partners(
rootids,
partners = c("input", "output"),
synapse_table = c("synapses_250226", "synapses_v1"),
...
)
Arguments
- rootids
Character vector specifying one or more BANC rootids. As a convenience this argument is passed to
banc_ids
allowing you to pass in data.frames, BANC URLs or simple ids.- partners
Character vector, either "outputs" or "inputs" to specify the direction of synaptic connections to retrieve.
- synapse_table
Character, the name of the synapse CAVE table you wish to use. Defaults to the latest.
- threshold
Integer threshold for minimum number of synapses (default 0).
- remove_autapses
Logical, whether to remove self-connections (default TRUE).
- cleft.threshold
Numeric threshold for cleft filtering (default 0).
- datastack_name
An optional CAVE
datastack_name
. If unset a sensible default is chosen.- ...
Additional arguments passed to
flywire_partner_summary
Examples
if (FALSE) { # \dontrun{
# Basic connectivity analysis
sample_id=banc_latestid("720575941478275714")
head(banc_partner_summary(sample_id))
head(banc_partner_summary(sample_id, partners='inputs'))
# Research application: Analyze descending neuron control circuits
library(dplyr)
# Get DNa02 descending neurons that control walking behavior
dna02_annotations <- banc_codex_annotations() %>%
filter(cell_type == "DNa02")
dna02_id <- dna02_annotations$pt_root_id[1]
# Find their downstream targets in the VNC
dna02_outputs <- banc_partner_summary(dna02_id, partners='outputs') %>%
slice_max(weight, n = 10)
# Visualize the circuit in neuroglancer
banc_partner_summary(sample_id, partners='inputs') %>%
slice_max(weight, n = 20) %>%
banc_scene(open=TRUE)
} # }
if (FALSE) { # \dontrun{
# plot input and output synapses of a neuron
nclear3d()
fpi=banc_partners(banc_latestid("720575941478275714"), partners='in')
points3d(banc_raw2nm(fpi$post_pt_position), col='cyan')
fpo=banc_partners(banc_latestid("720575941478275714"), partners='out')
points3d(banc_raw2nm(fpo$pre_pt_position), col='red')
} # }